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A/B Testing in Networks: Graph 
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• Participants in the experiment who would like to influence 
the estimate of interest, e.g. ATE 

Adversaries

Introducing bias

Increasing 
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• Competition 

• Noncompliance 

• Privacy

Motivations for Adversaries
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• Assume all adversaries have the same behavior model 
Avatar vector image designed by Freepik 
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ATE Estimation in Networks
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Adversary Placement

(1) Random assignment over the graph 

(2) Targeted adversary placement 

• When adversaries form a dominating set 
over the graph, every vertex contains at 
least one adversary in their set of neighbors
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Adversary Influence

• Adversary influence measures 
the sum of relative effects of a 
node on its neighbors’ outcomes
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Bias in ATE Induced by 
Adversaries

• Adversaries bias ATE estimates through:  

(1) The value of their outcome 

(2) The effect of their outcome on their 
neighbors’ outcome
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- strength depends on true network effect 
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- strength depends on true network effect 

Approximate bias from effect of 
adversary outcome using 
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Experimental Results

Yi,t = �0 + �1zi + �2
AiYt�1

Di,i
+ Ui,t
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Summary
• Derived expressions for the bias induced by adversary 

behavior  

• Empirically demonstrated a vulnerability in network A/B 
testing to manipulation of ATE estimates from exploitation 
of peer effects  

• Examined the difference between random and targeted 
placement of adversaries in the network 

• Future work: Characterize the relationship between 
adversary detection and strength of adversarial response
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