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violation of SUTVA
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A/B Testing in Networks: Graph
Cluster Randomization

treatment

J. Ugander, B. Karrer, L. Backstrom, and J. Kleinberg. Graph cluster randomization: Network exposure to multiple universes. SIGKDD 2013
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Adversaries

* Participants in the experiment who would like to influence
the estimate of interest, e.g. ATE

* |ncreasing or
decreasing the
estimate of interest

* |ntroducing random
behavior to the
estimate
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Motivations for Adversaries

Here's Why Facebook Really, Really Wants You to

C O m p et I t | O n Use T’Ijose New Response Emojis

il Like 8 Comment

 Noncompliance

Ihen the only appropriate way to deal with
this is to use the wrong emoji's for each
situation. Which, | plan to only use the emoji's:
for now on.

e Privacy

Avatar vector image designed by Freepik
Robot vector images designed by Vecteezy
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Motivations for Adversaries
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ATE Estimation in Networks

e Assume outcome Is a linear additive function of
treatment (Gui et al, 2015)

Y:(Z) = o+ Bz +vA Z +nAlY /Dy,
[ individual treatment effect

v : peer treatment effect
7): peer outcome effect

e Estimate treatment effect from data

g<Zi70i) :CV‘|‘BZ@‘—|—’)/O'7; ) )
Z;i: treatment assignment ATE =3+ %4

o, treatment exposure

H. Gui, Y. Xu, A. Bhasin, and J. Han. Network A/B testing: From sampling to estimation. WWW 2015
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Adversary Placement

(1) Random assignment over the graph ®
(2) Targeted adversary placement ©
 When adversaries form a dominating set

over the graph, every vertex contains at o® o®
least one adversary in their set of neighbors 909 @
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Adversary Intfluence

» Adversary influence measures @ o°
the sum of relative effects of a @
node on its neighbors’ outcomes ®

@ O ®
®
. Q@
—1 N

column sum of transition probabilities
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Adversary Intfluence

» Adversary influence measures %
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the sum of relative eftects of a @
node on its neighbors’ outcomes o 4833
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Bias In ATE Induced by
Adversaries

* Adversaries bias ATE estimates through:
(1) The value of their outcome

(2) The eftect of their outcome on their

neighbors’ outcome $
O @ ) ®
- strength depends on true network effect ®
0. Q@.
5 1 _ %e®" @
ATERY = g d_(Yfr' — YAj\?")
jEA, 7
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Bias In ATE Induced by
Adversaries

* Adversaries bias ATE estimates through:
(1) The value of their outcome

(2) The eftect of their outcome on their
neighbors’ outcome

- strength depends on true network effect
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ATER, = ) - (¥r = Ya\)
jeEA, Y
B Approximate bias from effect of
~ wT(YT — YA2 ) adversary outcome using
" influence, w
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Experimental Results

Ao Peer Effect

0 0.1 0.5

o
NN
1

o
(S

o
o

©
n
L

o
()
L

o
o

A1

©
n
L

o
()
1

Treatment Effect

G0

o
o

©
N
1

Bias in Estimated ATE / Estimated nonadversarial ATE

&
S & & L~ & & N
S & & o S & & o
S o© © o o

Normal

Yii = Ao+ Aizi + Ao

Kaleigh Clary

o

2]
Q (») (»)
Adversarial fraction of network

method — dominating = random

Adversary

AY;lIUr,;t Y,

D ; ’

Y

A/B Testing in Networks with Adversarial Members

O
O
+
O
[N
-
b—h
N
~
|l
-



Summary

* Derived expressions for the bias induced by adversary
behavior

« Empirically demonstrated a vulnerability in network A/B
testing to manipulation of ATE estimates from exploitation
of peer etfects

e Examined the difference between random and targeted
placement of adversaries in the network

* future work: Characterize the relationship between
adversary detection and strength of adversarial response
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